Diversity of Chinese *Phytophthora infestans* isolates

Ying Li & Theo van der Lee

Institute of Vegetables and Flowers, CAAS, Beijing, China Plant Research international, Wageningen, The Netherlands

EuroBlight Workshop Hamar, 2008

Presentation outline

- Importance of potato in China
- Late blight in China
- Potato cropping in China
- Characteristics of isolates
- Future prospects

Importance of potato in China

Export and internal market demands in China
Large, fast and high potential
Stimulated by Chinese government

Potato late blight in China

- Severity: infected area 30-75%, yield loss 20-30%
 - 2008: expected infected area >45%
- For instance: Gansu province, 1st yield
 - Year: 2006-2007
 - Planting area: ~640,000 ha
 - Yield: >10 million ton
 - Infection area: 50-80%
 - Yield loss: 0.5 -1.5 million ton, ~10% loss
- One of six top agricultural diseases and pests in IPM work plan (2008) of Ministry of Agriculture, China

Potato late blight in China

- No broad-spectum resistant varieties
 - 90% susceptible
- National-wide transportation of seed tubers and trade activities

National monitor and alert system of potato late blight

中国马铃薯晚疫病监测预警系统(lateblight-china)

WAGENINGENUR

Developed by Dr.Cao, HAU, Hebei, China

Potato cropping in China

Se: seed potato St: Starch potato Pr: Processing potato Ta: Table potato Ex: Export potato

Planting season

Green: one-season Yellow: two seasons Gray: rotation

Blue: winter planting

Potato area is increasing especially in South.

Three ways where the farmers get seed tubers:

1. Home-grown seed tubers;

 Local government subsidy to the seed tuber companies Northwest area: Guizhou, Gansu, Ningxia
 Local government subsidy to farmers only for seed potato areas;

- More than 300 approved varieties;
- Different cultivar series from local breeding institutes;
- Mainly from about 6 series (20 varieties), which are all from breeding institutes in main potato areas;

Research objectives

- Sampling
- Storage of isolates
- Phenotyping: virulence, fungicide resistance
- Genetic analysis: haplotype, SSRs
- Population diversity
- Migration, trends, forecast
- Short- and long-term resistance management

Xinjiang

Tibet

Locations of provinces, autonomous regions

Ningx

Shaan

and municipalities.

ngjian

anjin

Jiangsu

Zhejiang

Euijan

readong

Shangha

Taiwar

Research on Chinese isolates

Previous studies

- A1, A2 in China (Zhang Z, *et.al.* 1996)
- Ila haplotype and A1 (Guo J, et. al. 2008)
 - low genetic diversity
 - high diversity for virulence

Isolates studied in this research

119 isolates Mainly collected in 2006 and 2007

Mitochondrial Haplotyping of Chinese isolates

la, lla, llb found

P2: digestion result

P4: digestion results

Mating type test of Chinese isolates

• Sichuan, Yunnan: both A1 & A2

• Others all A1

SSR analysis of Chinese isolates

8 SSR markers from PRI

43 alleles

		0	0 2	0 3	0 7	1 0	1 4	1	1	1 8	1 9	1 9	1 9	2 0	2	2 1	2 1
<u>Polyr</u>		8	9	4	7	2	2	4	9	4	3	7	9	1	6	0	3
	ipiO1	с	Т	т	А	A	т	G	с	с	А	Т	с	т	G	с	Α
■ /N/	ipiO2	Α	Т	т	А	A	т	G	С	с	Α	Т	с	Т	G	С	Α
	Chinese	С	Т	т	Α	A	Т	G	С	С	Α	Т	с	т	G	С	А
	H30P04	с	T/G	т	AIG	AG	T/G	G	С	С	Α	Т	СГ	т	GIC	С	А
IVI	avrblb1	1	G	G	А	G	G	с	т	Α	т	G	т	G	с	А	G
10																	
S //V	/	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3
🔹 AI		1	1	1	2	2	7	7	7	8	9	9	0	0	0	4	7
		4	8	9	Э	8	1	8	9	3	0	1	4	5	6	2	U
IN 🖻	ipiO1	с	G	А	Т	Т	G	с	Т	Т	С	С	Α	G	Α	С	А
AVD 2 a	ipiO2	с	G	А	Т	Т	G	С	С	Т	Т	Α	Α	Т	Α	G	с
avr3a	Chinese	с	G	А	т	Т	G	с	TC	Т	ст	CIA	Α	G/T	Α	CIG	AC
Chinese	H30P04	CIA	G	А	т	Т	G	С	TC	Т	ст	CIA	А	G/T	А	CIG	AC
	avrbib1	А	С	т	С	A	т	А	т	с	с	с	G	с	т	с	с

Conclusion

- Haplotypes Ia, IIa and IIb were found; correlated to regions
- SSRs revealed several clonal lineages

 SSR, a useful tool to monitor the pathogen population in future Including haplotype and mating type

 Pathogen migration: local culture, economic level and breeding tradition -> influence by distribution layout

- Long-term storing the isolates
- Deeper sampling in coming years
- Importance of monitoring the population migration
- > Virulence tests
- > Aim to organize a comprehensive project, like Euroblight

Introduction of my institute IVF-CAAS

- Located in Beijing, China
- Governed by CAAS, Ministry of Agriculture
- Established in 1958
- 195 employees include 140 research staff
- 8 research departments
 - Biotechnology
 - Potato Breeding

Acknowledgments

All Chinese colleagues who contributed isolates

Institute of Vegetables and Flowers (IVF), CAAS, Beijing

Dr. Sanwen Huang, Biotechnology group Dr.Liping Jin, Potato breeding group

Wageningen

Prof. Evert Jacobsen

- Dr. Theo van der Lee
- Dr. Geert Kessel

All my colleagues working together with me

Questions???

